Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 7037, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528098

RESUMO

Stereoscopic display technology plays a significant role in industries, such as film, television and autonomous driving. The accuracy of depth estimation is crucial for achieving high-quality and realistic stereoscopic display effects. In addressing the inherent challenges of applying Transformers to depth estimation, the Stereoscopic Pyramid Transformer-Depth (SPT-Depth) is introduced. This method utilizes stepwise downsampling to acquire both shallow and deep semantic information, which are subsequently fused. The training process is divided into fine and coarse convergence stages, employing distinct training strategies and hyperparameters, resulting in a substantial reduction in both training and validation losses. In the training strategy, a shift and scale-invariant mean square error function is employed to compensate for the lack of translational invariance in the Transformers. Additionally, an edge-smoothing function is applied to reduce noise in the depth map, enhancing the model's robustness. The SPT-Depth achieves a global receptive field while effectively reducing time complexity. In comparison with the baseline method, with the New York University Depth V2 (NYU Depth V2) dataset, there is a 10% reduction in Absolute Relative Error (Abs Rel) and a 36% decrease in Root Mean Square Error (RMSE). When compared with the state-of-the-art methods, there is a 17% reduction in RMSE.

2.
Sci Rep ; 14(1): 5868, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38467677

RESUMO

Monocular depth estimation has a wide range of applications in the field of autostereoscopic displays, while accuracy and robustness in complex scenes are still a challenge. In this paper, we propose a depth estimation network for autostereoscopic displays, which aims at improving the accuracy of monocular depth estimation by fusing Vision Transformer (ViT) and Convolutional Neural Network (CNN). Our approach feeds the input image as a sequence of visual features into the ViT module and utilizes its global perception capability to extract high-level semantic features of the image. The relationship between the losses is quantified by adding a weight correction module to improve robustness of the model. Experimental evaluation results on several public datasets show that AMENet exhibits higher accuracy and robustness than existing methods in different scenarios and complex conditions. In addition, a detailed experimental analysis was conducted to verify the effectiveness and stability of our method. The accuracy improvement on the KITTI dataset compared to the baseline method is 4.4%. In summary, AMENet is a promising depth estimation method with sufficient high robustness and accuracy for monocular depth estimation tasks.

3.
Nanomaterials (Basel) ; 12(15)2022 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-35957107

RESUMO

0.9KNbO3-0.1BaTiO3 ceramics, with a bimodal grain size distribution and typical tetragonal perovskite structure at room temperature, were prepared by using an induced abnormal grain growth (IAGG) method at a relatively low sintering temperature. In this bimodal grain size distribution structure, the extra-large grains (~10-50 µm) were evolved from the micron-sized filler powders, and the fine grains (~0.05-0.35 µm) were derived from the sol precursor matrix. The 0.9KNbO3-0.1BaTiO3 ceramics exhibit relaxor-like behavior with a diffused phase transition near room temperature, as confirmed by the presence of the polar nanodomain regions revealed through high resolution transmission electron microscope analyses. A large room-temperature electrocaloric effect (ECE) was observed, with an adiabatic temperature drop (ΔT) of 1.5 K, an isothermal entropy change (ΔS) of 2.48 J·kg-1·K-1, and high ECE strengths of |ΔT/ΔE| = 1.50 × 10-6 K·m·V-1 and ΔS/ΔE = 2.48 × 10-6 J·m·kg-1·K-1·V-1 (directly measured at E = 1.0 MV·m-1). These greatly enhanced ECEs demonstrate that our simple IAGG method is highly appreciated for synthesizing high-performance electrocaloric materials for efficient cooling devices.

4.
Small ; 18(27): e2201290, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35670492

RESUMO

MXenes, as a 2D planar structure nanomaterial, were first reported in 2011. Due to their large specific surface area, high ductility, high electrical conductivity, strong hydrophilic surface, and high mechanical flexibility, MXenes have been extensively explored in the development of various functional materials with desired performances. This review is aimed to summarize the current progress in synthesis, modification, and applications of MXene-based composite films as electrode materials of flexible energy storage devices. In the synthesis of MXenes, the evolution and exploration of etchants are emphasized. Furthermore, in order to develop MXene-based composite films, the components used to modify the MXene nanoflakes, including 0D, 1D, and 2D nanomaterials, are summarized, and the perspectives and research direction of such materials are also discussed.

5.
Adv Mater ; 34(5): e2102877, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34699637

RESUMO

Anisotropy is the characteristic of a material to exhibit variations in its mechanical, electrical, thermal, optical properties, etc. along different directions. Anisotropic materials have attracted great research interest because of their wide applications in aerospace, sensing, soft robotics, and tissue engineering. 3D printing provides exceptional advantages in achieving controlled compositions and complex architecture, thereby enabling the manufacture of 3D objects with anisotropic functionalities. Here, a comprehensive review of the recent progress on 3D printing of anisotropic polymer materials based on different techniques including material extrusion, vat photopolymerization, powder bed fusion, and sheet lamination is presented. The state-of-the-art strategies implemented in manipulating anisotropic structures are highlighted with the discussion of material categories, functionalities, and potential applications. This review is concluded with analyzing the current challenges and providing perspectives for further development in this field.

6.
ACS Appl Mater Interfaces ; 10(24): 20225-20230, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29873478

RESUMO

Hybrid nanotubes of cation disordered rock salt structured Li2FeTiO4 nanoparticles embedded in porous CNTs were developed. Such unique hybrids with continuous 3D electron transportation paths and isolated small particles have been shown to be an ideal architecture that brought out enhanced electrochemical performances. Meanwhile, they exhibited improved extrinsic capacitive characteristics. In addition, we demonstrate a successful example to use cathode active material as anode for lithium-ion batteries (LIBs). More importantly, our hybrids had much superior electrochemical performances than most of the reported Li4Ti5O12-based nanocomposites. Therefore, it is concluded that Li2FeTiO4 can be a prospective anode material for LIBs.

7.
Nano Lett ; 18(5): 3290-3296, 2018 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-29667834

RESUMO

Theoretically, the accomplishment of phase transformation requires sufficient energy to overcome the barriers of structure rearrangements. The transition of an amorphous structure to a crystalline structure is implemented traditionally by heating at high temperatures. However, phase transformation under ambient condition without involving external energy has not been reported. Here, we demonstrate that the phase transformation of GeO2 glass to nanocrystals can be triggered at ambient conditions when subjected to aqueous environments. In this case, continuous chemical reactions between amorphous GeO2 and water are responsible for the amorphous-to-crystalline transition. The dynamic evolution process is monitored by using in situ liquid-cell transmission electron microscopy, clearly revealing this phase transformation. It is the hydrolysis of amorphous GeO2 that leads to the formation of clusters with a size of ∼0.4 nm, followed by the development of dense liquid clusters, which subsequently aggregate to facilitate the nucleation and growth of GeO2 nanocrystals. Our finding breaks the traditional understanding of phase transformation and will bring about a significant revolution and contribution to the classical glass-crystallization theories.

8.
ACS Appl Mater Interfaces ; 9(49): 42751-42760, 2017 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-29143523

RESUMO

The nitrogen-doping approach has been intensively adopted to improve various properties of metal oxides, especially for adjusting the energy band structure and extending the photoresponse range of oxide photocatalysts. However, the nitrogen doping behavior is still unintelligible and complex due to the diversity of compositions and crystal structures. In this work, new insights into the electronic structure and photoelectrochemical (PEC) properties of nitrogen-doped HNb3O8 were presented. On the one hand, we utilized an in situ experimental strategy to ascertain the effect of nitrogen doping on the energy band and photoelectrochemical (PEC) properties of HNb3O8 and nitrogen-doped HNb3O8 (N-HNb3O8). Their energy band level, donor densities, and interfacial charge transfer properties were studied by Mott-Schottky plots and electrochemical impedance spectroscopy. After nitrogen doping, the conduction band position is unusually descended by 0.23 eV, the valance band position is raised by 0.51 eV, the donor density (Nd) is increased from 3.71 × 1021 to 6.46 × 1021 cm-3, and interfacial charge transfer efficiency is reduced, though. On the other hand, density functional theoretical calculations were also conducted, so as to understand the electronic structures of HNb3O8 and N-HNb3O8. After nitrogen doping, the electronic structure is modified due to the upshift of the valance band edge consisting of hybrid N 2p and O 2p orbitals and the downshift of the conduction band edge consisting of the H 1s and Nb 4d orbitals. Furthermore, these insights into the behavior of nitrogen-doped semiconductors have important guiding significance toward their potential applications.

9.
ACS Appl Mater Interfaces ; 9(19): 16404-16416, 2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28459536

RESUMO

In this work, two novel flowerlike NiO hierarchical structures, rose-flower (S1) and silk-flower (S2), were synthesized by using a facial hydrothermal method, coupled with subsequent postannealing process. Structures, morphologies, and magnetic and electromagnetic properties of two NiO structures have been systematically investigated. SEM and TEM results suggested that S1 had a hierarchical rose-flower architecture with diameters in the range of 4-7 µm, whereas S2 exhibited a porous silk-flower architecture with diameters of 0.7-1.0 µm. Electromagnetic performances indicated that the NiO hierarchical structures played a crucial role in determining their dielectric behavior and impedance matching characteristic, which further influenced the microwave attenuation property of absorbers based on them. Due to its hierarchical and porous architectures, S2 had higher microwave absorption performances than S1. The maximum RL value for sample S2 can reach -65.1 dB at 13.9 GHz, while an efficient bandwidth of 3 GHz was obtained. In addition, the mechanism of the improved microwave absorption were discussed in detail. It is expected that our NiO hierarchical structures synthesized in this work could be used as a reference to design novel microwave absorption materials.

10.
Polymers (Basel) ; 8(2)2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-30979146

RESUMO

Ceramic-polymer nanocomposites, consisting of surface hydroxylated cube-shaped Ba0.6Sr0.4TiO3 nanoparticles (BST⁻NPs) as fillers and poly(vinylidenefluoride) (PVDF) as matrix, have been fabricated by using a solution casting method. The nanocomposites exhibited increased dielectric constant and improved breakdown strength. Dielectric constants of the nanocomposite with surface hydroxylated BST⁻NPs (BST⁻NPs⁻OH) were higher as compared with those of their untreated BST⁻NPs composites. The sample with 40 vol % BST⁻NPs⁻OH had a dielectric constant of 36 (1 kHz). Different theoretical models have been employed to predict the dielectric constants of the nanocomposites, in order to compare with the experimental data. The BST⁻NPs⁻OH/PVDF composites also exhibited higher breakdown strength than their BST⁻NP/PVDF counterparts. A maximal energy density of 3.9 J/cm³ was achieved in the composite with 5 vol % BST⁻NPs⁻OH. This hydroxylation strategy could be used as a reference to develop ceramic-polymer composite materials with enhanced dielectric properties and energy storage densities.

11.
Artigo em Inglês | MEDLINE | ID: mdl-24859668

RESUMO

In this paper, we report a gas flow phenomenon induced by ultrasonic water cavitation and capillary wave in a vibrating hollow tip and reflector system. The cavitation clouds generated a gas suction force and the capillary wave created tunnels through which the gas could go into the liquid. The gas flow rate was measured and compared under different conditions, including applied power, type of reflector, and tip-to-reflector distance. A model was proposed to explain the mechanisms of the gas flow and analyze the results in the experiments.

12.
Nanoscale ; 5(23): 11643-8, 2013 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-24096984

RESUMO

Understanding and measuring the size-dependent surface strain of nanowires are essential to their applications in various emerging devices. Here, we report on the diameter-dependent surface strain and Young's modulus of single-crystalline Co nanowires investigated by in situ X-ray diffraction measurements. Diameter-dependent initial longitudinal elongation of the nanowires is observed and ascribed to the anisotropic surface stress due to the Poisson effect, which serves as the basis for mechanical measurements. As the nanowire diameter decreases, a transition from the "smaller is softer" regime to the "smaller is tougher" regime is observed in the Young's modulus of the nanowires, which is attributed to the competition between the elongation softening and the surface stiffening effects. Our work demonstrates a new nondestructive method capable of measuring the initial surface strain and estimating the Young's modulus of single crystalline nanowires, and provides new insights on the size effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...